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LECTURE 1 
 
In these lectures:  modular semantics for DP and CP comparatives: 

DP:   Fred is (at least 10 cm) taller than Susan 
 CP: Fred is (at least 10 cm) taller than Susan is - / ever as –  
Modular semantics:   
 -scalar types interpreted as rich scales. 
 -the meaning of scalar expressions stays as long as possible at scalar types and  

operations on scalar types. 
 -scalar meanings only become non-scalar through type driven type shifting. 
 
Opposite view:   
Doetjes (AC-paper) – van Rooy (vagueness paper) – Kamp 1975 – Klein 1980: 

-Comparatives are derived through a semi-modal analysis from non-scalar  
adjective meanings.  
-comparative meanings become only scalar when driven in context. 

 
Two issues: 
 1. scalar versus non-scalar interpretations of adjectives: 
 λx.TALL(x,w)  versus λx. TALLcm(x,w) >TALL HIGHTALL,w 

scalar effects with adjectives:  modification with scalar operations:   
 rather/very/very very…tall 
 2. scalar versus modal definition of comparative. 
 tall      versus taller 
 λx.TALL(x,w) 
 λx. TALLcm(x,w) >TALL HIGHTALL,w  >TALL 
 
 
1. The cross-linguistic argument (Kamp 1975):  
cross-linguistically comparatives are morphologically derived from adjectives,  
the comparative is the more compex form. 
hence:  the semantics too should derive the comparative meaning from the adjective 
meaning: 
          semi-modal definition of comparative relation 
          (Kamp, Klein)  
Non-scalar adjective meaning  
          semi-modal definition of scalar operations (Klein) 
 
2. The acquision argument (e.g. van Rooy 2009): 
Common acquisition wisdom: adjectives are acquired considerably before comparative 
and other scalar operations. 
hence:  the semantics too should derive non-scalar adjective meanings before scalar 
meanings. 
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Rebuttal to 1: von Stechow 1985: 
You don't need to derive comparatives from adjectives or adjectives from comparatives, 
you can plausibly define both as morphological forms from a third underlying meaning: 
 
       tall[null] scalar adjective 
 tall[scale]      
      tall[-er] comparative 
 
I will accept this. 
-But it deals only with problem 1 not with problem 2. 
 
Rebuttal to 2:  non-scalar meanings and scalar meanings of adjectives 
 
 tall[non-scale] 
 
       tall[null] scalar adjective 
 tall[scale]      
      tall[-er] comparative 
 
-Non-scalar meanings of adjectives (qualitative definition e.g. red  light of certain wave length) 
-Scales are indexed for non-scalar (contextual predicates) 
 sTALL, sTALL ELEPHANT, …setting the contextual standards for where the high region of the scale is. 
-Scalar meanings of adjectives are set to be equivalent to non-scalar meanings when the scalar 
system matures: 
 λx.TALL(x,w)  ⇔ λx. TALLcm(x,w) >TALL HIGHTALL,w 
 
3. Conceptual reduction: 
-do not postulate complex scales, but derive more economic scalar systems from non-scalar 
meanings. 
-introduce scales only when forced. 
Non-modularity:   
-comparatives as relations between individuals, that become relations between individuals and 
scales only when combining with scalar meanings. 
 
I will sketch a Kamp and Klein style semantics and provide a rebuttal. 
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Kamp:  theory of vagueness with truth/falsity/undefinedness relative to precision states.     
The essential idea:  the comparative has a quasi-modal analysis, defined in terms of the 
truth-falsity of the predication at some (possibily counterfactual) precisition state. 
 
Supervaluation theories of vagueness, Kamp 1975, 1975: vagueness as a modal notion:  
vagueness is potential sharpness.   
Predicate tall is vague in state s iff within the set of ways in which the predicate can be 
made precise, the the line between the tall and the non-tall can still be drawn in different 
ways. 
  
Set of precision states S and a partial order of precisification ≤,  and  a predicate like tall 
is assigned in a precision state s three subsets of the domain D:  
-a positive extension: TALLs

+, the individuals in D that are, according to s, definitely tall.  
-a negative extension TALLs

¡: the individuals in D that are, according to s, definitely not-
tall.  
-a gap TALLs

⊥, the individuals in D that are according to s, borderline cases.   
Constraints on the structure make sure that precisification is monotonic and that 

vague predicates are potentially precise: 
-Partition: TALLs

¡, TALLs
⊥ and  TALLs

+  partition the domain D.  
-Monotonicity: if s1 ≤ s2, then TALLs1

¡ ⊆ TALLs2
¡ and TALLs1

+ ⊆ TALLs2
+.   

-Precise states: for every state s there is a state t such that s ≤ t and for each predicate P: 
Pt

⊥ = Ø. 
 
Analysis of comparatives (mixture of Klein, Kamp, Landman 1992, etc.) 
-Assume a notion of a degree predicate (see below) 
 

Let TALL be a degree predicate. 
d1 >TALL d2 iff ∃s ∈ S: d1 ∈ TALLs

+ and d2 ∉ TALLs
+ or ds ∈ TALLs

¡ and d1 ∉ TALLs
¡ 

 
The relation that holds between Littlebro and  Bigsis iff there is a state s where 
Littlebro is not tall and Bigsis isn't not tall, or Bigsis is tall and Littlebro isn't tall. 
 
Modal relation (existential quantification over alternative precision states. 
 
Presupposes a definition of degree predicate.   
 

TALL is a degree predicate iff  TALL satisfies the degree predicate constraint:  
 
Degree predicate constraint: 

Let ↓s be the set of maximal chains in S going down from s (chains of vagueness 
increasing states, precision reduction states) 
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If d1 >TALL d2 then 
∀s[ if d2 ∈ TALLs

+ then ∀b ∈ ↓s: ∃s' ∈ b: d1 ∈ TALLs'
+ and d2 ∉ TALLs'

+] and 
∀s[ if d1 ∈ TALLs

¡ then ∀b ∈ ↓s: ∃s' ∈ b: d2 ∈ TALLs'
¡ and d2 ∉ TALLs'

¡] and 
 

For any individuals Littlebro and Bigsis: 
If Bigsis >TALL  Littlebro then: 

-any state where Littlebro is tall can only be reached through a state where  
Bigsis is tall, and Littlebro isn't yet and 
-any state where Bigsis is not-tall can only be reached through a state where  
Littlebro is not-tall and Bigsis isn't yet. 

 
Observation: 
The the modal semantics of the comparative is only correct if the predicate satisfies the 
degree predicate constraint.   
witness constraint:  difference in height (Bigsis is taller than Littlebro) is witnessed in 
the precisification structure of the predicates TALLs

¡ and TALLs
+. 

 
The witness constraint is (obviously) a scalar aspect of the meaning of tall. One can 
assume, in fact, that it is an aspect that only matures when comparative structures 
mature. 
 
Problem 1: The intuitive  basis. 
 
Kamp:  upward direction = deciding for more objects that they are in the positive and the 
negative extension.  But: the extension is monotonic:  you do not revise your criteria for 
membership, what is in the positive and negative extension stays in.   
 
But then, is this predicate sharpening, and the inverse predicate blurring?   
But intuitively, when you sharpen the criteria for membership, objects fall out of the 
positive extension, and when you blur, more gets in. 
What is the relation between the formal relation on precision states and intuitive notions 
of defining and redefining standards of precision? 
 
Problem:  if it isn't clear what the order on precision states represents, then the degree 
predicates constraint is motivated by the definion of the comparative.    
-If the degree predicate constraint is the claim  that if we restrict ourselves to 
monotonic increase operations, the degree predicate denotations are ordered as the 
constraint says, then the definition presupposes a comparative ordering, rather than 
provide it. 
i.e. we can define relation R if we choose exactly the notion of sharpening and blurring 
that gives us R.   
-But if we don't have an independent criteron for why choose that notion oif sharpening 
and blurring, it seems chosen mainly in order to get R.   
-But then the definition doesn't define R, but presuppose R. 
 
-Problem 2: The same as for Klein (below).   
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Klein:  McConnell-Ginet's idea: 
 
-μ variable over adjective modifier functions,  
-TALL an adjectival predicate 
-op = orientation preserving.   
 
McConnell-Ginet: >TALL = λyλx. ∃μ[ op(μ) ∧ ([μ(TALL)](x)) ∧ ¬([μ(TALL)(y)) ] 
>TALL  =         the relation that holds between Chuck and  Barry iff  there is an   
                        orientation preserving function μ such that Barry is μ tall and Chuck is  

not μ tall. 
 
Idea:  Chuck and Barry are both very tall, but Barry is taller than Chuck.  We can express 
this with orientation preserving functions very very very and  very very very very:  both 
Chuck and Barry are very very very tall, but only Barry is very very very very tall.  
 
What does orientation preserving mean?   
It is easy to express this notion in terms of the scalar meaning of the adjective.   
-we associate with with short and interval (0,low) and with tall an interval (high, →). 
An orientation preserving function maps μ maps (0,low) onto (0,μ(low)) and (high,→) 
onto (μ(high),→).   
-Intuitively μ shifts the right-border of the interval for the adjectives that are oriented 
towards low and the left-border of the interval for adjectives that are oriented towards 
high. 
  
Example:  very tall shifts high to very(high) with high        < very(high) 
           shifts low  to very(low ) with very(low) < low 
 
Easy to define scalarly (in fact, easiest to define in a modular semantics) 
Klein must give a non-scalar semantics for orientation preserving modier modifiers like 
very. 
 
Klein 1980:  semantics of very with help of the notion of comparison set. 
Klein: comparision set is a contextual evaluation parameter for scalar adjectives: 
adjectives can vary their extension with comparision sets.   
-Out of the blue: short is evaluated relative to a contextually given comparison set: 
 
Fred is short is true rel. the population of Holland, because Fred is considerably  below 
the average height of Dutch males, or – for that matter – Dutch females.   
Fred is short is false rel. the population of Israel, since he is above the averege height of 
Israeli males.   
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(I accept that standards are set by a contextual property, but not a comparison set, see 
Kennedy's recent paper in L&P, also later in these lectures.  i.e. I do not believe that 
Chuck is short for a basketball player means that chuck is short within the set of 
basketball players 
-a) Chuck may only be a candidate basketball player 
-b) Intensional characterization:   
Her voice is low for a singer of Mozart's Concert Aria Repertoire, like all other voices.)  
 

The central semi-modal assumption: Wheeler 1972: 
Let s be a contextual comparison set. 
 
Chuck is very tall is true rel s if Chuck is tall is true rel s ∩ tall 

 
Semi-modal: the truth of very tall(x) relative to comparison set  s is defined in terms of 
the truth of tall(x) relative to a different comparison set (s ∩ tall) . 
 
-Existential quantification over orientation preserving functions and resetting of 
comparision set comes down to existential quantification over alternative comparison sets 
(similar to Kamp). 
 
As for Kamp, the comparison will only have the correct meaning if every comparative 
difference is witnesses in some comparison set: 
 
Let TALLs

+ be the positive extension of TALL relative to comparison set s. 
 
 Witness assumption: 
 If d1 >TALL d2 then TALL{d1,d2}

+ = {d1} 
 if Bigsis is taller than Littlebro then Bigsis is tall rel. to comparison set  

{Littlebr, Bigsis} and Littlebro is not tall rel. to {Littlebro, Bigsis}. 
 
 
The assumption looks well motivated when considering cases like the following: 
 
 (1) Karlsson holds up his hand with two clearly very big toffees.  While both are 
big,  

they are, nevertheless, clearly of different size.  Karlsson says:   
 Do you want the small one or the big one?  (cf. Lindgren 1959) 
  (2) ASSOCIATE:  The Chrysler Bulding and the Empire State Building are for 
sale.  
                  DONALD:       Buy the big one. 
 (3)  Two heavy suitcases, one even more more heavy than the other. 
  "Out of the way, I'll take the heavy one upstairs first."  
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However, these cases are non-typical. 
(4) Albertine and Andree are the most lovely persons  I know.  Even so, Albertine 

is  
just a tiny bit more lovely than Andree. According to Klein I must accept:   
Of Albertine and Andree, Albertine is lovely and Andree is not. 

 
But I don't:  both are lovely in every context that respects my standards for loveliness.   
 
Possible reply:  Think of comparison set {Albertine, Andree} as the comparison set in a 
context where you put a pistol on my chest and force me to chose one, if I think there is a 
difference.    
 (5) a.  Answer or die:  only one of Albertine and Andree is lovely.  Which one? 
       b. Only one of these two beautiful ladies can be his LOVELY and he is  
                      going to choose now: Fred, which one is Lovely? 
 
Problem:  In this context, lovely does not have its normal (= non-competitive meaning).   
      Lovely shifts to mean: the more lovely one.  
 
More examples: 
 (6) Two plates of hot soup, one steaming, the other boiling. I ask: 
       Do you want the hot one? 
 (7) Dante watches Brutus and Judas in hel. Virgil says, pointing at Judas: 
    Do you want to talk to the wicked one? 
 (8) Sven Kramer, Lee Seung-hoon and Ivan Skobrev are at the podium at the 
5000  
             meters skating medal ceremony at the Olympics in Vancouver.  The television  

      announcer says: 
       In the middle you see the fast one, on either sides are the not fast ones.   
 (9) Einstein and Feynman apply for a physics position.  Search committee 
member: 
  Let's take the clever one. 
 (10) Two mixings of a heavy metal song: 
  "I think we should put the loud mixing on the album." 
 
What about the exceptional cases? 
-Donald has a linguistic handicap:  in any domain only the biggest element counts as big. 
-Cf the losing skater:  "It just didn't go today, I was slow." =  Redefine slow as anything 
that doesn't get a medal. 
  
Proposed analysis for the other cases (the opposite of Klein''s assumption): 
In exceptional cases, the meaning of be small and be big can be stretched to a 
comparative meaning: be among the smaller ones and be among  the bigger ones: 
 
 (11) a. Do you want the small one or the big one? 
          b. Do you want the smal(ler) one (of the two) or the big(ger) one (of the two). 
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If  so, you cannot use the exceptional interpretations in (11a) to motivate the semantics of 
very and hence the semantics of the comparative fails, because the exceptional 
interpretations themselves are defined in terms of the semantics of the comparative.    
Most scalar adjectives do not naturally allow for comparative reinterpretation. 
But all allow compartives and modifiers like very.   
 
Moral:  Klein defines the meaning of the comparative in terms of the meanings that the  
              parts have and meanings that the parts don't have (i.e. comparative adjective  

 meanings).   
 
That is not Frege's principle. 
 
With this the non-scalar semi-modal interpretation of very fails, and with it the reduction 
of the comparative to the positive.  The same for other orientation preserving modifiers. 
Kamp's rediuction fails for similar arguments:  Kamp tells me that I must allow for 
Andree to be moved out of the positive extension of lovely before Albertine is, and this 
too, I refuse to do as long as  lovely means what it does. 
 
 
 
RICH SCALES 
 
Modularity:   
-from scale, domain of degrees to domain of individuals by type shifting with a measure function.   
-then the measure function must be recoverable from the degrees in the scale. 
Scalar domain: {<r,u,M>:  r ∈ R:  u is a unit and M a measure}  
Measure function Mu is recoverable. 
Rich scales:  real numbers, two way infinite (without ¡1, + 1), dense, linearly ordered, with  

          infimums and supremums and arithsmetics. 
 
van Rooy 2009:  weaker scales. 
 
van Rooy 2009: 

"Let us assume, for the sake of argument, that there are only two  
properties/dimensions associated with being clever: an ability to manipulate  
numbers, and an ability to manipulate people.  Let us say that John is cleverer  
than Mary iff John is better both in manipulating numbers and in manipulating  
people.  But now consider Sue.  Sue is worse than John in manipulating numbers  
but better in manipulating people.  Thus, neither John is cleverer than Sue, nor  
Sue is cleverer than John.  For the cleverer than-relation still being almost  
connected, it has to be the case that Sue is cleverer than Mary.  But it is well  
possible that although Sue is better at manipulating people than Mary (and John),  
Mary is better than Sue in manipulating numbers.  Thus, if one doesn't fix a  
particular dimension, one cannot claim that cleverer than denotes a relation that is  
almost connected." van Rooy, Vagueness and Linguistics p. 25. 
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(If we assume a scale ordered by a linear order <, and a function μ mapping individuals to 
degrees on the scale, then the induced relation between individuals λyλx.μ(x) < μ(y) is 
almost connected (it becomes a linear order by taking equivalence classes unde the 
relation λyλx. μ(x) = μ(y)).) 
 
Van Rooy : 
 
         Anna         H,H 
 
          Beth  H,L                      L,H               Bettina  
 
         Charlotte       L, L    
 
 
We measure cleverness along two dimensions,  
-H, H is more clever than anybody else  
-L,L is less clever than anybody else 
-H,L  versus L,H? 
 
van Rooy:  incommensurable 
I say:  equal at the current state of  calculating complex values. 
 
For clarity replace being more clever than by a contextually neutral relation: being more 
suited than in a job search.    
-We are looking for an administrator who is good at cruncing numbers and at 
manipulating people.   
Anna and Charlotte are not in the running. 
Who is more suited;  Beth or Bettina? 
Why not say:  they are equally suited (in different ways)? 
equally suited = equally suited given the lack, in context, of a weighing procedure for 
complex suitedness. (Contextually non-monotonic notion). 
 
This is possibly still a matter of esthetic choice, but there is a real problem. 
Van Rooy proposes weaker scalar structures, but not too weak, so as not to make defining 
measures possible:  
 

Semi orders (e.g Luce 1956) irreflexive relations R such that: 
Interval order:     R(x,y) ∧ R(v,w) ∧ ¬R(x,w) → R(v,y) 
Semi-transitive:  R(x,y) ∧ R(y,z) ∧ ¬R(x,v) → R(v,z) 
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Problem:  if van Rooy's objection to linear orders above is valid, it is valid against his 
own structures as well (and measuring is just not possible): 
 
          Anna 
 
 
                    
 
 
          Eleanor (y) 
 
  Beth (w)    Betttina (x)      
 
Diana (v)       
       
      
        
 
 
     Charlotte 
 
The same situation as before, but we add Eleanor and Diana. 
-Eleanor's score on the first criterion is the same as Bettina's, worrisome.  
  But her score one the second criterion is significantly better than Bettina. 
-Beth and Diana score the same on the second criterion, but Beth is significantly better on 
the first. 
Nevertheless, these score are in the same ball park. 
 
van Rooy's structures tell us:  Eleanor is more suited than Diana 
Me:  I don't see that is natural given his own argument. 
        If we insist than Beth and Bettina are incomparable, it is more natural to regard  
        Diana and Eleanor as incomparable as well. 
 
-I am not convinced by van Rooy's argument concerning dimensions,  
-Cassical view on scales:   

scales are linear orders with the structure corresponding to the reals.   
Dimensional comparatives like be more clever than correspond in context to a 
 multiplicity of scales:   
 

-in context there may be available a scale for each dimension, scales for union 
dimensions (underspecified between two dimensions), intersection dimensions 
(calibrating the values along two dimensions),etc.   
This is not something special, since, in the semantics a scales is assigned relative to a 
contextually specified property in the first place which intuitively is meant to constrain 
how the measure function calculates its values. 
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MEASURE AND UNIT DETERMINE MEASURE FUNCTION UP TO 
EXPRESSIBLE EQUIVALENCE 
 
The measure function is sensitive to contextual property k. 
-Scales like height-in-cm where the numerical values are linguistically accessible, 
because the language contains unit-denoting expressions, which combine with number 
expressions:  (more than three) centimeters (taller). 
-Scales like loveliness-in-heartbeats, where the numerical values are not linguistically 
accessible (no unit-denoting expressions combining with number expressions):  here the 
actual numerical values assigned by the measure function are not important: tongue-in-
cheek degrees. 
 
Nevertheless, tongue-in-cheek domains provide an argument for rich scales, because the 
proportional scalar relations are imporant in these domains, and they require domains to 
which arithmetics applies.. 
 
Multiplication: 
Even in scalar domains of tongue-in-cheek degrees multiplication expressions are 
possible with "very round" numbers: 
 
 (1) a. Albertine is ten times/a hundred times more lovely than Emma. 
                  b. #Albertine is 7.3 times more lovely than Emma. 
 
I see no reason to assume that these expressions do not have their normal meaning in 
these domains.  Thus, if we make the assumtion that for reasonably sized amounts of 
lovelineness, twice an amount is a lot, the following inference, showing addition and 
multiplication, should be valid: 
 

(2) a.  Mary is more lovely than Albertine and Elisabeth Bennett taken together. 
      b. Sarah is just a bit more lovely than Albertine, and just a bit more lovely than  

             Elisabeth Bennett. 
       c. Mary is quite a bit more lovely than Sarah. 
 

 (3)  a. Mary is ten times more lovely than Albertine. 
        b. Sarah is a hundred times more lovely than Mary. 
        c. Sarah is a thousand times more lovely than Albertine. 
 
We capture this by in general allowing the measure function to vary with respect to the 
context, but requiring it to preserve expressible properties: 
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Constraint: for measure M, unit u and contextual properties k1 and k2 and language L: 
                     measure functions Mu,k1 and Mu,k2 are expressibly equivalent relative to L 
if 
 -Mu,k1 and Mu,k2 are defined for the same inputs 
                                       preserve the induced order on the input 
                                       preserve induced supremums and infimums 
                                       preserve special elements if the language expresses them  
                                       (like a 0 for height or loveliness) 

                            preserve those arithmetic properties that the language expresses. 
 
Example 1:  gauged scales lilke height-in-cm. 

 A measure function Mu is gauged iff for all k1, k2: 
  for all x,w:  Mu,k1(x,w) = Muk2(x,w) 
 
For Height English allows full arithmetic access to the language:   
English has unit expressions centimeters, inches,… which combine with numeral 
expressions, three centimeters, and these expressions can be used as differentials in scalar 
expressions;  three centimeters taller,… 
 
-The relation between a degree assigned by the measure function and degree 0 is 
expressible in the language, which means that the measure height-in-cm is forced to be 
gauged in English. 
 
Example 2: Loveliness is a tongue-in-cheek measure.  Numerical differentials are (out of 
the blue) not available. 
-We find basic addition through sums. 
-We find multiplication with rhetioric round numbers. 
 
-the actual degree of loveliness assigned to Mary and Jane rel k1 to k2 may vary (since 
they are tongue-in-cheek-degrees), but if Mary is ten times as lovely as Jane in  
sk1, she is ten times as lovely as Jane in sk2, because the relation ten times as lovely is 
preserved:  
  
 λyλxλs.Lp,k(x,s) = 10 £ Lp,k(y,s) 
 
-Note:  while the scale is unbounded in both directions, the measure function range need 
not be unbounded at all.  For instance:  both loveliness and height have expressible null-
points. 
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In sum:   
-the structures are classical, in that I assume issues concerning different degrees of 
precision, dimensional aspects (like the different senses of clever), and issues of non-
linearity relating to that (see van Rooy 2009) to be fixed in the background context (the 
model).   
-I do incorporate one aspect of measure theory (Suppes et. at., van Rooy): the idea that 
preservation constraints determine the difference between extensional scales and tongue-
in-cheek scales.   
-But I assume that the actual preservations required are not fixed by mathematics or 
logic, but are language dependent and even contextually manipulable, even fraudulently: 

 
(4)  Fraudulent Advertisement:  
       "When we did the measurements, Mrs. X was 37 lipels fatter than was  
        healthy and esthetic for her age and body frame.  After our treatment all  
        37 lipels were gone."  
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LECTURE 2 
 
Let k be a comparison property, a property of individuals. 
 
A scale for k is a structure sk with the following ingredients: 
 
1. scale measure: sk

M is a measure M     [Height, Age,…]  
2. scale unit:  sk

u is a unit u, appropriate for M. [cm, inch,…] 
3. scalar domain: sk

Δ is ΔM,u = {<r,u,M>: r ∈ R} [triples based on the reals] 
 
Mnemonic superscrips denote the relevant element of a tuple:  
example:  <29,cm,H>r = 29 
 
SCALAR DIRECTIONAL NOTIONS 
4. scalar direction: sk

> ∈ {>M, <M}           where: 
 >M = {<δ1,δ2>: δ1, δ2 ∈ ΔM,u and δ1

r > δ2
r} 

 <M = {<δ1,δ2>: δ1, δ2 ∈ ΔM,u and δ1
r < δ2

r} 
5. scalar supremums: if  sk

> = >M, then sk
t = t>M 

       if  sk
> = <M, then sk

t = t<M      where:  
  t>M(Δ) = <t>(Δr),u,M>   (= <u<R(Δr),u,M>) 
 t<M(Δ) = <t<(Δr),u,M>   (= <t<R(Δr),u,M>) 
 
Supremum and Infimum on R: 
Let X ⊆ R Let X<

t =  {y ∈ R: ∀x ∈ X: x ≤ y},  
             the set of all numbers at least as big as every number in X 
 
   the <-minimum of X<

t, if X<
t has a <-minimum  

 t<(X) =  
   undefined otherwise 
 
  Let X<

u =  {y ∈ R: ∀x ∈ X: y ≤ x} 
             the set of all numbers at least as small as every number in X 
 
   the <-maximum of X<

u, if X<
u has a <-maximum 

 u<(X) =  
   undefined otherwise 
   
6. scalar subtraction if  sk

> = >M, then sk
¡ = ¡>M  

       if  sk
> = <M, then sk

¡ = ¡<M          where: 
 ¡>M = λδ2λδ1.<δ1

r ¡ δ2
r,u,M> subtraction 

 ¡<M = λδ2λδ1.<δ2
r ¡ δ1

r,u,M> converse of subtraction 
We take notions of sk

<, sk
u, sk

+ to be defined accordingly. 
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7.scalar high and low intervals 
     1. sk

HIGH, sk
LOW ∈ sk

Δ with sk
HIGH sk

> sk
LOW 

     2. sk
↑, sk

↓ are intervals in sk
Δ with sk

t(sk
↑) = sk

HIGH and sk
u(sk

↓) = sk
LOW   

     3. if k is unbounded:  
 sk

↑ = (sk
HIGH,→) = {δ ∈ sk

Δ: δ sk
> sk

HIGH} 
 sk

↓ = (←,sk
LOW) = {δ ∈ sk

Δ: (sk
LOW

 sk
> δ)} 

 
Examples:  hot and warm are >-oriented, right-unbounded  
-if you're hot, you're warm 
-if you are hot and something is hotter than you it has a higher temperature 
-if you're hot, and something has a higher temperature, it is hot 
    cold, cool are <-oriented, and left unbounded    
-if you're cold, you're cool 
-if you are cold and something is colder than you it has a lower temperature 
-if you're cold and something has a lower temperature it is cold 
    tepid is <-oriented but bounded             
-if you're cold, you're not tepid 
-if you are tepid and something is more tepid than you it has a lower temperature  
-if you are tepid and something has a lower temperature it is not necessarily tepid 
 
8. scalar measure function:  
     sk

μ = Mu,k     where: 
 Mu,k: D £ W → sk

Δ 

Constraint: 
 ∀w ∈ W:  k(w) = λx. Mu,k(x,w) ∈ sk

↑   
 
Out of the blue, the comparison property for the height scale may be the property TALL, 
i.e. we deal with scale sTALL, with sTALL

M = H, and sTALL
u = cm (say).   

The constraint makes the connection between the non-scalar adjective meaning TALL 
and the scales meaning: 
 
 ∀w ∈ W:  TALL(w) = λx. Hcm,k(x,w) ∈ sTALL

↑   
 
 
COMPARISON PROPERTIES: 
 
We take k to be a comparison property, u intensional conjunction, and 0 the null-
property such that 0 u P = P, P u 0 = P, etc.  
 
When TALL u k is the scalar comparison property, we think of k as a contextual 
restriction on TALL, restricting the extension of TALL to a contextual subset. 
 
Note that the comparison property plays a similar contextual role to Klein's comparison 
set, but  without the extensional connotations that Klein's sets have.   
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Example: 
 
(1) a.   Lowly is tall. 
      b.  Giraffa is short. 
 
-Context k chooses an appropriate default unit (cm)  
-and determines a relevant property (short for a worm/giraffe) : 
 SHORT u WORM u k/ SHORT u GIRAFFE u k. 
 
We get for (1a) and (1b): 
(1) a. HTALL u WORM u k, cm(Lowly,w)   ∈ sTALL u WORM u k

↑ 
      b. HTALL u GIRAFFA u k, cm(Giraffa,w)  ∈ sTALL u GIRAFFE u k

↑ 
 
The properties TALL u WORM u k and TALL u GIRAFFE u k determine scales 
sTALL u WORM u k  and sTALL u GIRAFFE u k. 
 
In this example these scales are identical height-scales except in two respects: 
1. HTALL u WORM u k, cm and HTALL u GIRAFFE u k, cm differ from HTALL, cm in that they may 
have sortal restrictions:   
We may plausibly assume that HTALL u WORM u k, cm is undefined for giraffes, and  
HTALL u GIRAFFE u k, cm is undefined for a work. 
 
Cf.:  (3) a.  Hank (who is a basketball player) is short for a basketball player. 
              b. Buck (who wants to be a basketball player) is a bit short for a basketball  
                  player.  
   c.# Tiny Tim(who still has a trauma about basketball from school) is short for a  
                    basketball player. 
 
The measure function would be defined for basketball players and candidate-basketball 
players, but not for Tiny Tim's who aren't in the ball park. 
(Note:  this precisely goes against Klein's analysis, Klein doesn't have candidates in the 
comparison set.) 
 
2. sTALL u WORM u k

HIGH  < sTALL
HIGH < sTALL u GIRAFFE u k

HIGH. 
2. sTALL u WORM u k

LOW  <  sTALL
LOW < sTALL u GIRAFFE u k

LOW. 
 
The high and low values on the scale, and consequently, the high and low intervals on the 
scale depend on the contextual properties:   
what is tall for a worm is much lower than what is tall out of the blue and the latter again 
is much lower than what is tall for a giraffe.  
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9. Converses. 
The converse scale of sk, (sk)c is the scale which is identical to sk except that where sk  
       has orientation >M (<M), (sk)c has orientation <M (>M), with all dependent notions  
       defined accordingly.  
We define, accordingly converses for all relevant notions: 
1. (sk

M)c = sk
M, (sk

M)u = sk
u, (sk

Δ)c = sk
Δ , (sk

μ)c = Mu,k. 
2. (sk

>)c  = sk
<  

3. (sk
t)c = sk

u  
4. (sk

¡)c = ¡<M if sk
¡ = ¡ >M 

    (sk
¡)c = ¡>M if sk

¡ = ¡ <M 
7. (sk

H)c = sk
LOW, (sk

LOW)c = sk
HIGH 

    (sk
↑)c = sk

↓, (sk
↓) = sk

↑ 

 
 Constraint: 
 For comparision property k, we assume there is a unique comparision property  
 kc such that for every appropriate scale sk: s(k

c) = (sk)c 
 
Example:  if the semantics stipulates: COLD = HOTc 
Then the constraints stipulate:  HOT(w)    = λx.T°,HOT(x,w)  ∈ sHOT

↑ 
     COLD(w)  = λx.T°,HOT(x,w)r ∈ sHOT

↓ 
For clarity we will write sM,u,k for scale sk

  with sk
M = M and sk

u = u 
 
-We will make assumptions like the following: 
(TALL u GIRAFFE u k) = TALLc u GIRAFFE u k   
 
-We will make assumptions like: 
WARM v HOT  
-the scales of WARM and HOT are identical temperature -scales, except that: 
  sWARM,°

HIGH < sHOT,°
HIGH 

 
-Special constraint on tepid: 
 for all d ∈ D for all w ∈ W:   
 if TEMP°,TEPID(x,w) ∉ sTEPID

↑, then TEMP°,TEPID(x,w) = ⊥ 
 
 (1) The soup is more tepid than the bathwater. 
 
(1) is only defined, if the soup and the bath water are tepid.   
We don't have a similar constraint for most adjectives: 
 A is hotter than B doesn't mean that A and B are hot,  
even :  A is redded than B may not be true for A and B that are distinctly not red, but 
can be true for A and B that are not red, but both have some reddish aspects.   
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Idea: 
tall is ambiguous:    tall denotes sTALL 
          tall denotes sTALL

M (= H) 
short is not ambiguous:  short denotes sTALL

c 

 
Comparative:  adjective + er  is built from adjective meaning:            sADJECTIVE 
  three centimeters adjective is built from adjective meaning: sADJECTIVE

M 

Prediction:  tall-er   short-er 
         three centimeters tall #three centimeters short 
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TYPESHIFTING SEMANTICS 
 

The Principle BPR: (Bach, Partee, Rooth):   
Interpret everything as low as you can, but not so low that you will 
regret it later. 

 
Modular semantics for degree phrases:  
-three denotes 3. 
-Keep the denotations of degree expressions at the level of degrees, predicates of degrees, 
etc. for as long as you can. 
Example: scalar semantics of rather, very is straightforward: 
Degree interpretation of tall: λδ.δ >H sH

HIGH  

Very: sH,k → sH,very(k), where  sH,very(k)
HIGH >H sH

HIGH 
 
This means that the scalar meaning of tall must shift, later in the derivation. 
 
PREDICATE OF DEGREES + MEASURE FUNCTION →  

PREDICATE OF INDIVIDUALS 
 COMPOSE WITH MEASURE FUNCTION  
 α → α ° M   (where α ° M  = λx.α(M(x)) ) 
            <δ,t>  <e,t> 
λδ. δ >H <3,cm,H>  °  Hcm,k          =   λx. Hcm,k(x,w) >H <3,cm,H>  
The set of heighs bigger than three cm  The set of individuals with height bigger than three cm 
 
 λδ. δ >H <3,cm,H>  °  Hcm,k    
.  Generalized function composition 

f  ° g  = λxn…λx1.f(g(x1,…,xn))  
 (Bring function g down to the input type for f, by applying it to variables, apply f  

to the result, and abstract over all the variables used.) 
 
1.  Bring Hcm,k down to the input type for λδ. δ >H <3,cm,H> by applying to variables: 
 Hcm,k(x,w) 
2. Apply λδ. δ >H <3,cm,H> to this: 

λδ. δ >H <3,cm,H> (Hcm,k(x,w) ) 
   = 
         Hcm,k(x,w) >H <3,cm,H> 
3.  Abstract over the variables applied to earlier: 
 λwλx. Hcm,k(x,w) >H <3,cm,H> 
4. The world parameter is fixed in context: 
 λx. Hcm,k(x,w) >H <3,cm,H> 
 Equivalently: 
 λx. Hcm,k(x,w)r > 3 
 
Similarly:  <δ,<δ,t>> into <x,<δ,t>>. 
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-Modularity:  -scalar operations take place at the level of scales of degrees, degrees,  
 predicates of degrees, relations between degrees.   

  -Since degrees are triples, <r,u,M>, you can reconstruct the measure 
function up to contextual parameters from a set of degrees. This allows shifting. 
 
 
SEMANTIC ASSUMPTIONS IN MORE DETAIL: 
1. tall has an interpretation as measure H, short does not. 
2. tall and short have interpretations as scales.  

(more precisely, functions from units to scales). 
Let sk,u be a scale sk with sk

u = u  
(out of the blue: 
tall    denotes the basic scale of Height: λu.sTALL,u  
short denotes the converse scale of Height: λu.sTALL,u

c
  

3. The meaning of adjectives tall/short as scalar predicates and comparatives tall/short 
are derived from their scalar meanings.  
 
4.   more denotes the difference function (subtraction) 
On numbers: 

more = λmλn. n ¡ m 
maps two numbers n and m onto what n is more than m 

On scales: 
 more = λs.s¡ 
 maps a scale onto its difference function 
   
 less  denotes the converse of the difference function 
On numbers: 
 less = λmλn. m ¡ m 
 maps two numbers n and m onto what n is less than m 
On scales: 
 less = λs.s¡ 

 maps a scale onto the converse of its difference function. 
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The heart of the semantics for comparatives is the following principle: 
 

A one place number/degree predicate composes with a difference function to 
form a two place number/degree relation.   

 
 P    °  f    =  R 
 one place relation   two place function    two place relation 
 
 λz.P(z)  °  λyλx.f(x,y)  
1. Apply λyλx.f(x,y) to two variables to bring it down to the right type to serve as input 
for λz.P(z):    f(x,y) 
2. Apply λz.P(z) to this:   λz.P(z) (f(x,y) ) = P(f(x,y)) 
3. Abrstract over the variables introduced: 
 λyλx.P(f(x,y))  two place relation 
   
 
DERIVATION TREE 
 
                                               PREDdim 
                                     
                                                              RELdim            MP    
       
             RELunit  DIM         M  DP 
        tall/short     than 
      PREDunit          DIFunit  
               more/less 
                                   PREDnum         UNIT          
               centimeters                               
                                           MP                                                             
                        
            RELnum        M               DPnum                                                        
                              than    three 
PREDnum    DIFnum                       
Øa bit           more/less                         
 
 
 PREDunit 
 Øa bit   (as in:  Ø more tall than) 
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STEP 1: 
-PREDnum: null-predicate of numbers Øa bit, with semantic meaning a bit (or some) 
 Øa bit → λr.r >R 0        (the set of positive real numbers) 
-DIFnum: more and less denote the difference function and its converse (resp): 
 more  → λmλn. (n ¡ m)         
 less  ] → λmλn. (m ¡ n)         
 
STEP 2:  COMPOSITION:  RELnum 

Øa bit more  →  λr.r > 0  °  λmλn. (n ¡ m)  
λr.r > 0  °  λmλn. (n ¡ m) =    λmλn. ( [λr.r > 0]( (n ¡ m) ) )   = 
λmλn. (n ¡ m) > 0   
 
The scales have arithmetics, so we can use standard addition tricks: 
 
λmλn. (n ¡ m) > 0   = λmλn. (n ¡ m)+m > 0+m = 
λmλn. n > m  =  >R   
 
Øa bit more  →  > 
 

Øa bit less  →  λr.r > 0  °  λmλn. (m ¡ n)  
         = λmλn. (m ¡ n) > 0  =  <R 

 
STEP 3: PREDnum: APPLY the meaning of the RELnum derived to 3: 

more than three → λm. m >R 3 
  less than three  → λm. m <R 3 
 
STEP 4: PREDunit: LIFT the numerical predicate and cm to predicates of degrees,  
semantically adjoin the latter to the first: 
 
We typeshift a predicate from a set of numbers to a set of degrees. 
 
 Let P be a predicate of numbers, u a unit 
 LIFT[P,u] = λδ. P(δr) ∧ δu = u 
 

more than three centimeters →  λδ.δr  > 3 ∧ δu = cm 
the set of degrees whose numerical value is bigger than three and whose unit is cm 

less than three centimeters  →  λδ.δr < 3 ∧ δu = cm 
the set of degrees whose numerical value is bigger than three and whose unit is cm 
 
Also: null degree predicate Øa bit:  (Δ: default unit) 

Øa bit      → λδ.δr  > 0 ∧ δu= Δ 
 
STEP 5 and 6: DIFunit and DIM: more and less:  more → λs.s¡  less → λs.(sc)¡ 

tall → λu.sTALL,u,k short → λu.sTALL,u,k
c 
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STEP 7 
more than three centimeters    + more                    =   more than three centimeters more 
one place predicate                   3 place function      3 place relation 
λδ.δr  > 3 ∧ δu = cm    °     λs.s¡                    = 
       λsλδ2λδ1.s¡(δ1,δ2) 
λsλδ2λδ1. ( [λδ.δr  > 3 ∧ δu = cm] (s¡(δ1,δ2)) )   
   = 
λsλδ2λδ1. s¡(δ1,δ2)r > 3 ∧ s¡(δ1,δ2)u = cm 
 
STEP 8 
more than three centimeters more + tall  = more than three centimeters more tall 
 
tall → λu.sTALL,u 
 
At this point we use the fact that degrees have memory (are triples). 
1. apply the meaning of  tall to the unit extractable from the meaning of the three place 
relation between cm-degrees:  sTALL,cm 
2. aplly the three place relation to this: 
 
λsλδ2λδ1. s¡(δ1,δ2)r > 3 ∧ s¡(δ1,δ2)u = cm (sTALL,cm )  
   = 

 λδ2λδ1. sTALL,cm
¡(δ1,δ2)r > 3 

 
Now:  sTALL,cm

¡ =  ¡>H 
So: 
 
λδ2λδ1. sTALL,cm

¡(δ1,δ2)r > 3  = λδ2λδ1 ∈ ΔH,cm. (δ1 ¡>H δ2)r > 3 = 
 
λδ2λδ1 ∈ ΔH,cm. δ1

r ¡ δ2
r > 3  = λδ2λδ1  ∈ ΔH,cm. δ1

r > δ2
r + 3 

 
more than three centimeters more tall = λδ2λδ1  ∈ ΔH,cm. δ1

r > δ2
r + 3 

  the relation that holds  between two degrees if the numerical value of the first is 
 more than the numerical value of the second plus 3. 

  
After reduction: 
[RELdim more than three cm more tall than] → λδ2λδ1∈ ΔH,cm:   δ1

r > δ2
r  + 3  

[RELdim less than three cm more tall than ]  → λδ2λδ1∈ ΔH,cm:   δ1
r < δ2

r  + 3  
[RELdim more than three cm less tall than]  →  λδ2λδ1∈ ΔH,cm:   δ1

r < δ2
r  ¡ 3  

[RELdim less than three cm less tall than ]  →  λδ2λδ1∈ ΔH,cm:   δ1
r > δ2

r  ¡ 3 
[RELdim Ø more tall than ]     → λδ2λδ1∈ ΔH,Δ:      δ1

r > δ2
r 

[RELdim Ø less tall than ]     → λδ2λδ1∈ ΔH,Δ:      δ1
r < δ2

r 
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FACT:  β more short  is equivalent to β less tall   
E.g.: at least three cm more short than =  at least three cm less tall than  
                                 λs.s¡      sH,u,k

c   λs.(sc)¡      sH,u,k 
                                                                 (sH,u,k

c)¡ 

                                                         ¡H
c    

 
Relations between individuals:  composition with the measure function  
(twice in the derivation): 
(1) Fred is taller than Susan    Hcm,w(Fred)r  > Hcm,w(Susan)r   
(2) Fred is more than three cm taller than Susan    Hcm,w(Fred)r  > Hcm,w(Susan)r  + 3  
(3) Fred is less than three cm  taller than Susan        Hcm,w(Fred)r  < Hcm,w(Susan)r  + 3  
(4) Fred is shorter than Susan   Hcm,w(Fred)r  < Hcm,w(Susan)r   
(5) Fred is more than three cm shorter than Susan  Hcm,w(Fred)r  < Hcn,w(Susan)r  ¡ 3  
(6) Fred is less than three cm shorter than Susan    Hcm,w(Fred)r  > Hcm,w(Susan)r  ¡ 3  
 
Case (3) (and 6): compare (7):   
(7) A.  Is John taller than Mary? 
            B.  I don't know.  But I do know that he is less than two centimeters taller than 

      Mary.  You see, Mary is 1.63.  And I happen to know that John was rejected  
      by the police because of his height, and they only accept people 1.65 and up.    

 
This discourse is felicitous and compatible with John being smaller than Mary, 
supporting the interpretation given in (3). 
 
This semantics for DP comparatives is a generalization of Hoeksema 1982 

 
Montague's generalization applies to DP comparatives:  
The DP complement of an extensional transitive verb/DP-comparative relation 
takes semantic scope over the meaning of the transitive verb/comparative 
relation. 

 
 DP1  TV  DP2:   Normal scope reading:  DP1(λx. DP2(λy.TV(x,y)) 
 
1. Shift taller than by composition with the measure function: 

λδ2λδ1∈ ΔH,Δ:  δ1
r > δ2

r   shifts to λyλδ1 ∈ ΔH,Δ:  δ1
r > HΔ(x,w)r 

2. We apply to the object DP:   λδ1 ∈ ΔH,Δ.DP2 (λy:  δ1
r > HΔ(y,w)r)   

3. Shift this with the measure function: λx..DP2 (λy:  HΔ(x,w) r > HΔ(y,w)r)   
4. Apply this to the subject DP:  DP1(λx..DP2 (λy:  HΔ(x,w) r > HΔ(y,w)r) )  
 
Prediction:  DP comparatives are semantically like extensional transitive verbs.  
 
Support 1:  scope of quantificational DP complements 
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QUANTIFICATIONAL DP COMPLEMENTS (ignoring world parameter w) 
 
John is taller than every girl. ∀y[GIRL(y) → HΔ(John)r > HΔ(y)r]  
                                      O 
  o   o 
             HΔ(g1)r  ……………….HΔ(gn)r  John is taller than the tallest girl.   
 
John is taller than some girl. ∃y[GIRL(y) ∧ HΔ(John)r > HΔ(y)r]  
                        O 
  o   o 
             HΔ(g1)r   ………………HΔ(gn)r   John is taller than the shortest girl. 
 
John is taller than exactly three girls. |GIRL ∩  λy. HΔ,(John)r > HΔ(y)r | = 3 
                                                O 
  o o  o o  o 
             HΔ(g1)r   HΔ(g2)r HΔ(g3)r HΔ(g4)r…….. HΔ(gn)r 

 John is taller than the shortest three girls, but not taller than any other girls.   
(Many theories have problems getting this) 
 
John is taller than no girl. ¬∃y[GIRL(y) ∧ HΔ,(John)r > HΔ(y)r]  
                                                 
  o         o 
              HΔ(g1)r ………….HΔ(gn)r   John's height is at most that of the shortest 
girl.   
(Stilted, because English prefers auxiliary negation, but felicitous.)   
 
 
 
 
John is at least two cm taller than every girl. 

∀y[GIRL(y) → Hcm(John)r ≥  Hcm(y)r + 2]  
                                       
  o       o   o        o 
           H"(g1)r  +2 …………H"(gn)r   +2 

John's height is at least the height of the tallest girl plus two inches. 
 
John is at most two cm taller than every girl. 

∀y[GIRL(y) → Hcm(John)r ≤  Hcm(y)r + 2]  
                                       
  o       o   o        o 
       H"(g1)r     +2…………H"(gn)r       +2 

John is at most the height of the shortest girl plus two cm.   
Cf. the following valid inference: 

a. John is at most two cm taller than every girl. 
b. Mary is the shortest girl. 
c. Hence, John is at most two cm taller than Mary. 
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LECTURE 3 
 
DP-comparatives:  
 (1) Donald  is richer than [DP Fred] 
CP-comparatives: 
 (2) Donald is richer than [CP Fred has ever been ¡] 
 
More general characterization: 
 
Categorical comparatives:   [XP α] is comp than [XP β] 
-comparative relations between expressions of the same categories: 
 (1) [DP Donald]  is richer than [DP Fred] 
 (3) [INF to be] is more interesting than [INF not to be] 
            (4) [S Jim runs] faster than [S you run] 
 
With ellipsis: 
 (5) Jim runs faster than you 
either:  a. extended comparative relation: 

[DP Jim] [compar runs faster ] than [DP you]  
or: b. categorial comparsative with ellipsis:  

[S Jim runs] faster than [S you  ¡   ]  
                                                            run 
 
CP-comparatives:  [XP α] is comp than [CP …[XP β]  ¡…] 
               λδ            δ 
Semantically interpreted gap-construction in which an comparative XP occurs, but which 
can freely contain other CP internal material: 
 
 (6) Donald is richer than [CP Fred has ever been ¡] 
        [CP Every Englishman might have been ¡ in 1989 ] 
 
We cannot exclude the possibility that DP comparatives also have readings as elliptical 
CP-comparative. 
 
 (1) Donald  is richer than [DP Fred] 
 (7) Donald  is richer than [CP [DP Fred] ¡] 
 
-Semantics from DP-comparatives given can be extended without much problem to 
categorical comparatives. 
-But what is the semantics for CP comparatives? 
-If DP comparatives are a simple case of CP-comparatives with ellipsis, then we don't 
need the DP comparatives given. 
 
-While we cannot exclude the possiblity that DP comparatives have readings as elliptical 
CP-comparatives, we can show that not all DP comparatives (i.e. not all categorical 
comparatives) are elliptical CP-comparatives. 
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Argument 1: Classical argument of anaphora. 
 (1) a.   Nobody is taller than himself. 

[DP Nobody] is taller than [DP himself] 
       b  #Nobody is taller than himself is.                    
  [DP Nobody] is taller than [CP [DP himself] is ¡] 

     c.  #Nobody is taller than himself. 
  [DP Nobody] is taller than [CP [DP himself] ¡ ¡] 
 
If (1a) has only an analysis as an elliptical CP comparative, it is incorrectly predicted to 
be infelicitous. 
 
Argument 2: Downward entailing DPs in CP-comparatives.  
Hoeksema, Rullmann:  Downward entailing DPs in CP-complements are 
infelicitous. 

(2) a.    Mary is taller than nobody. 
        b.  #Mary is taller than nobody is −. 
        c.  #Mary is taller than nobody ever was −. 
Cf, also 

(3) a. #Mary is more famous than John isn't −. 
        b. #Mary is more famous than John will never be −. 
  c. #Bill is taller than at most three girls ever were −. 
  d. #Bill is at least two inches taller than nobody ever was. 
             e. #Bill is at most two inches taller than nobody ever was. 
  f. #Bill is exactly two inches taller than nobody every was. 
 
-(2a) is felicitous, if stilted, and nobody has a wide scope reading:   

Nobody is such that Mary is taller than them., i.e. Mary is the shortest. 
-(2b) and (2c) are baffling.   
 
What does (2c) mean?  Are you trying to say that nobody ever was as tall as Mary is?  
Mary's height has boldly gone where nobody's height has ever gone before?  
 
 
My own judgement: My brain is trying several interpretation strategies simultaneously 
and gets hopelessly muddled.    
 
If (2a) has only an interpretation as an elliptical CP comparative, it is predicted to be 
infelicitous. 
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Argument 3:  A cross-linguistic argument:  Mandarin Chinese has categorial 
comparatives, with ellipsis, but no CP comparatives.  
 
Comparative data in Li and Thompson 1981: 
Comparatives of the form: (° is the position where in  not as…that…(less … than)  
or with…same…(as…as…) you find the second element   
 
 I  more  You  ° gradable predicate:  tall/like Susan/come early/late eat food 
     I am taller/like Susan more/come earlier/…than you 
 I run more you run ° fast 
 I run more you ¡    ° fast 
                                      run 

I run faster than you 
  

Elephant ¡      more bear nose ° long 
                           nose 
     An elephant has a longer nose than a bear 
 
 I ¡    more ¡ yesterday ° comfortable 
   now        I 
     I am more comfortable (now) than (I was) yesterday 
 
But (Lise Cheng, p.c.) Mandarin Chinese does not have CP comparatives. 
 
Thus we do not fnd:  
 
#I  not as you might have been that rich  

I am less rich than you might have been  
#I not as every member of my club was in 1998 that rich 
  I am less rich than every member of my club was in 1998 
 
If DP comparatives are elliptical CP comparatives, then there are only CP comparatives, 
and one would expect CP comparatives to be universal.   
On the other hand, if Chinese has categorical comparatives, why not English as well. 
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Argument 4: DP-comparatives and polarity. 
 
DP-comparatives seem to allow polarity sensitive (PS) items and seem to be downward 
entailing (DE): 

 
(1) a. Mary is more famous than anyone. 

  b. (1) Mary is more famous than John or Bill. 
          (2) Hence, Mary is more famous than John. 
 
Hoeksema 1982:   
1. anyone in (1a) and or in (1b) allow free choice interpretations (FC). 
    Hence:  the facts in (1) are consequences of FC interpretations, not PS interpretations. 
(Certainly DP-comparatives allow FC-any:  only FC-any can be modified by almost 

 (2)  Mary is more famous than almost anyone.) 
 
2. DP comparatives are not downward entailing: (3) is invalid: 

(3) (1) John is more famous than Mary. 
  (2) Mary is a girl. 
  (3) Hence, John is more famous than every girl. 
 
3. Semantics of DP comparatives predicts that polarity items are not licensed, since 
by Montague's generalization, the DP complement takes semantic scope over the 
comparative relation. 
 
4. Dutch has PS items that are not FC items, and these are not felicitous in DP  
    comparatives.  
Hoeksema: ook maar iemand is PS but not FC (cf. FC item wie ook maar): 
(4)  a.     Ik leen geen boeken uit  aan ook maar iemand. DE context: 

        I   lend no    books    out to    ook-maar-someone PS felicitous 
        I don't lend books to anyone  
b.  #Dat kan je ook maar iemand  vragen.   Modal context:  

        That can you ook-maar-someone ask   PS infelicitous 
        That, you can ask anyone  
 c.     Dat kan je wie dan ook vragen.   Modal context: 
                 That can you who-dan ook ask    FC felicitous 

        That, you can ask anyone  
PS items are felicitous in CP comparatives but not in DP comparatives:  
(5) a.  Marie is beroemder dan  ook maar iemand    ooit  geweest is.  CP comparative 
            Marie is more famous than ook-maar-someone ever been is     PS felicitous  
     Marie is more famous than anyone has ever been. 
      b. #Marie is beroemder dan ook maar iemand.  DP comparative 

Marie is more famous than ook-maar-someone  PS infelicitous 
            Marie is more famous than anyone 
      c. Marie is beroemder dan wie dan ook.   DP comparative 

Marie is more famous than who-dan ook   FC felicitous 
Marie is more famous than anyone  
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Hoeksema's claim can be strengthened by looking at stressed énige.  As a plural, not-
necessarily stressed item enige means  a few, and is not at all a polarity item: 
 
(6)  Ik heb   hem enige boeken uitgeleend. 
       I lent him a few books. 
 
But as a singular, stressed element, énige is a PS item, and it means any, PS any, and nor 
FC any: 
(7)  a.   Ik leen geen boeken uit aan énige filosoof. DE context 

      I lend no books to any philosopher  PS felicitous 
          b.  #Dat  kan je énige filosoof  vragen.  UE modal context: 
         That, you can ask any philosopher.  PS infelicitous 
And we find that énige is infelicitous in DP comparatives:  
 (8) a. Marie is beroemder dan énige filosoof ooit geweest is.  CP comparative  

Marie is more famous than an philosopher has ever been. PS felicitous   
        b.#Marie is beroemder dan énige filosoof    DP comparative 

  Marie is more famous than any  philosopher  PS infelicitous 
              
Complicating data: 
(5b) and (8b) improve in felicity if we tag on them a FC appositive phrase:  
 (9) a.  Marie is beroemder dan ook maar iemand, wie dan ook. 
            b.  Marie is beroemder dan énige filosoof,  welke  je ook maar kiest. 
               whichever one you choose.  
This supports: FC is licensed in DP-comparatives,  PS is not.  
 
The data are real, but not as strong for every speaker. 
Crit Cremers p.c.: (10b) is fine or almost fine: 
 (10) a. #Marie is beroemder dan énige filosoof 
                    b.  Marie is beroemder dan welhaast énige filosoof 
                         Mary is more famous than almost any philosopher. 
 
Madame Bovary, translation Hans van Pinxteren: 
 (11)  Een boerenjongen van een jaar of vijftien, een stuk groter dan één van ons     
         A farmers boy of about fifteen, a lot bigger than any of us  
 
van Pinxteren finds this good enough to show on the first page of Madame Bovary, while 
for me this is completely infelicitous. 
 
Where is the variation to be located?  Suggestion:    
-Elliptic CP-complement readings do exist, and license polarity items 
-Competition between DP-complement reading and elliptical CP-complement reading is 
slanted in favour of DP-complement reading.  
-What varies is how accessible the CP-complement reading is: 
 -For me:            difficult 
 -For Crit:            easier  
 -For van Pinxteren:  easy 
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GENERAL SEMANTICS FOR CP COMPARATIVES 
 
Terminology:  DP-comparative and CP-comparative in (1): comparative correlates.     
(1) a. John is taller than DP 
 b. John is taller [CP than DP is ¡ ] 
 

[α  [MP than DP is ¡ ] ] 
  PREDdim 
 
REldim    MP 
  α 
   M  CP 
             than 
           C  IP 
                                                Ø 
     DP  I' 
 
      I  PRED 
                                                                       is                           Ø 
   
                                                            
   M λδn DP                           λδ.R(δn,δ)    °  Hα 

 
RELdim α is the relation we have built up for the DP comparative. 
 
1. Classical wisdom:  The CP contains syntactically an operator-gap construction. 
 
2. Standard assumption: this construction is semantically interpreted as variable 
binding. 
-We introduce a variable δn at the gap 
-We abstract over this variable at the CP-level:  λδn…..δn…. 
 
3. Common assumption: The variable abstracted over is a degree variable. 
 
4. Common  assumption:  the gap is a predicate gap., it is interpreted as a predicate 
 
5. Modularity: the gap denotes a degree predicate. λδ….δ…. 
Since the gap contains degree variable δn that is abstracted over at the CP level, the gap 
is interpreted as a degree predicate: 
 
 Gap:  λδ.R(δn,δ)  for some relation R  
 

inverse notation: λδ. δn R δ 
6. Modularity: DP + λδ. δn R δ:  shift the degree predicate to a predicate of individuals 
by composition with the measure function. 
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7. Rich degrees:  the degree predicate λδ. δn R δ will be constrained by the external 
degree relation α.  From α (and the context) we can reconstruct the measure function Mα,k    
 Hence the gap shifts to predicate of individuals: 
 
 Gap:  λy.δn R Mα,k(y,w) 
 
8. IP semantics: 
  DP(λy.δn R Mα,k(y,w)) 
 
9. Abstraction at the level of the CP: 
  λδn.DP(λy.δn R Mα,k(y,w)) 
 
  λδ.DP(λy.δ R Mα,k(y,w)) 
 
This gives a set of degrees as the denotation of the complement so far.   
Some theories in the literature assume that at this level an implicit operation takes place 
(like maximalization).  We assume an operation M in order to compare theories with 
each other: 
 
10. CP semantics:   M(λδ.DP(λy.δ R Mα,k(y,w))) 
 
11. Dimensionalrelation α + CP:  
 GENERAL SEMANTICS FOR COMPARATIVE COMPLEMENTS:  

[α     [MP than DP is ¡ ]    ] 
  α +   M(λδ.DP(λy.δ R Mα,k(y,w)))  
 
1. What is relation R? 
2. What is operation M? 
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Theory I: Von Stechow 1984:   

R  = (identity) 
 M   t<   (supremum, maximalization operation) 
 
Thus:   
taller +  than DP is ¡ 
>H          M  (λδ.DP(λy.δ R HΔ,k(y,w)))  
    t<H(λδ.DP(λy.δ = HΔ,k(y,w)))  
taller than DP is: 
 λδ. δ >H t<H(λδ.DP(λy.δ = HΔ,k(y,w))) 
 
taller than Mary is 
λδ. δ >H t<H(λδ. λP.P(m) (λy.δ = HΔ,k(y,w))) 
  = 
λδ. δ >H t<H({HΔ,k(m,w)} = λδ. δ >H HΔ,k(m,w) 
The set of height-degrees bigger than Mary's height 
 
taller than every girl is 
λδ. δ >H t<H(λδ. λP.∀y[GIRL(y) → P(y)](λy.δ = HΔ,k(y,w))) 
  = 
λδ. δ >H t<H(λδ. ∀y[GIRL(y) → δ =HΔ,k(y,w)]) 
 
The set of degrees that are identical to the height of every girl is only defined if all girls 
are of the same height, and then it denotes the set of that height. 
 
Thus: 
 Bill is taller than every girl is 
presupposes, for von Stechow, that all girls have the same height. 
 

taller than some girl is 
λδ. δ >H t<H(λδ. ∃y[GIRL(y) ∧ δ =HΔ,k(y,w)])  
  = 
λδ. δ >H t<H({HΔ,k(y,w): y ∈ GIRL}) 
 
{HΔ,k(y,w): y ∈ GIRL} is the set of all girl-height degrees. 
 t<H({HΔ,k(y,w): y ∈ GIRL} is the height of the tallest girl. 
 
Thus: 
 Bill is taller than some girl is 
means, for von Stechow: 
 Bill is taller than the tallest girl. 
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Theory II: Reconstruction of Heim 1980: 
  R   λδ2λδ1. 0 < δ1

r ≤ δ2
r (monotonic closure down) 

  M   t<   (supremum, maximalization operation) 
 
taller +  than DP is ¡ 
>H          M  (λδ.DP(λy.δ R HΔ,k(y,w)))  
    t<H(λδ.DP(λy.0 < δr < HΔ,k(y,w)r))  
 
taller than DP is: 
 λδ. δ >H t<H(DP(λy.0 < δr < HΔ,k(y,w)r)) 
 
taller than Mary is 
λδ. δ >H t<H(λδ. λP.P(m) λy.0 < δr < HΔ,k(y,w)r)) 
  = 
λδ. δ >H t<H(λδ. 0 < δr < HΔ,k(m,w)r)) = λδ. δ >H HΔ,k(m,w) 
The maximum of the set of heights between 0 and Mary's height is Mary's height. 
Hence:  
 
The set of height-degrees bigger than Mary's height 
 
taller than every girl is 
λδ. δ >H t<H(λδ. ∀y[GIRL(y) → 0 < δr < HΔ,k(y,w)r]) 
 
λδ. ∀y[GIRL(y) → 0 < δr < HΔ,k(y,w)r is the set of degrees that bigger than 0 but lower 
than the height of every girl. 
This is the set of all degrees bigger than 0 below the height of the smallest girl. 
Hence, the supremum of this set is the height of the smallest girl. 
 
Hence:  
 Bill is taller than every girl is 
means, for Heim:  Bill is taller than the smallest girl. 
 

taller than some girl is 
λδ. δ >H t<H(λδ. ∃y[GIRL(y) ∧ 0 < δr < HΔ,k(y,w)r])  
 
λδ. ∃y[GIRL(y) ∧ 0 < δr < HΔ,k(y,w)r] is the set of height degrees bigger than 0 but 
smaller than the height of the tallest girl. 
 
Hence, t<H(λδ. ∃y[GIRL(y) ∧ 0 < δr < HΔ,k(y,w)r]) is the height of the tallest girl. 
 
Thus: 
 Bill is taller than some girl is 
means, for Heim:  Bill is taller than the tallest girl. 
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VON STECHOW'S SUPREMUM THEORY. 
 
PROBLEM: (Schwarzschild and Wilkinson):   
Maximalization theories predict unnatural readings and fail to predict natural readings. 

 
(1) John is taller than some girl is ¡                                         

von Stechow: Wrong meaning:   John is taller than the tallest girl   
 (2) John is taller than every girl is ¡                                         

Heim:          Wrong meaning:  John is taller than the shortest girl  
von Stechow:  John is taller than the degree to which every girl is tall. 
Unwarranted presupposition: all girls have the same degree of height 

 
PROPOSED SOLUTION (Larsons, Von Stechow):   

Give the CP internal DP scope over the comparative. 
 
Problem 1:   
This requires systematic scoping of all kinds of DPs out of the CP, which is 
problematic .   
Cf. scoping out of relative clauses, wh-clauses, or even propositional attitude 
complements:  in all other CPs scoping out is severely restricted. (Larsons and von 
Stechow propose non-standard scope mechanisms:  a recognition of the problem, but not 
a solution.) 
 
Problem 2:  Intensional contexts (Schwarzschild and Wilkinson) 

(3) John is taller than [CP Bill believes that every girl in Dafna's class is ¡.] 
λδ. BELIEVE(BILL, ∧∀x[GIRL-IN-DC(x) → δr > HΔ(x)r)])  (HΔ(John)) 
John's actual height has the property that Bill believes it to be bigger than what he 
thinks is the height of what he thinks is the tallest girl in Dafna's class. 

-No presupposition that Bill believes that the girls have the same height.  
-von Stechow: scope every girl over the comparative.   
-But every girl takes narrow scope  under believe, which is inside the comparative.  
 
Problem 3: Polarity items: 
Unlike DP-comparatives, CP-comparatives allow polarity items inside the CP-
complement:   
 
(4) Marie is beroemder dan énige filosoof en énige psycholoog  ooit geweest zijn.   
      Marie is more famous than any philosopher and any psychologist have ever been. 
-No presupposition that any philosopher has the same degree of fame as any 
psychologist.  
- von Stechow: scope enige filosoof en enige psycholoog over the comparative.   
-But conjunction of  PS items: not licensed if scoped over the comparative.  
 
CONCLUSION (Schwarzschild and Wilkinson): 
Supremum theories like von Stechow's (and Heim's) are untenable. 
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LECTURE 4 
 
THE INTERVAL THEORY OF SCHWARZSCHILD AND WILKINSON 

 
DP1 is α than DP2 is ¡ 

 
Schwarzschild and Wilkinson: 
 
  DP1 is β-taller than DP2 is –.  
where β is a numerical predicate of the form:  at least two centimeters, at most two 
centimeters, exactly two centimeters, Ø….. 
 

∃j[ DP1 is j-tall ∧ DP2 is max(λi. β(j¡i))-tall ] 
 There is a degree interval j such that DP1 is j-tall and DP2 is k-tall,  

where: 
k is the maximal interval in the set of intervals i such that j¡i is β  

 
We will use an example: 
 
 (1) John is more than 2 centimeters taller than exactly four girls are. 
                ∃j[ John is j-tall ∧ Exactly four girls are max(λi. more than 2 cm(j¡i))-tall ] 
 
Intuition: 
"If a comparative statement is true, we should be able to perform the following routine.  
First we show some interval [j] that satisfies the main clause [John is j-tall]. 
Then we find the largest interval [k] all of whose parts are below [j] by the amount given 
by the differential [more than 2 cm]. 
We then show that that maximal interval satisfies the subordinate clause  
[exactly four girls are k-tall]"  (Schwarzschild and Wilkinson, p. 23) 
 
intervals more than 2 cm below 
 
              2 cm  
      
   k       i 
           O  
                                                   HΔ(John) 
 o o  o o  o o 
   HΔ(liz)r   HΔ(pam)r HΔ(ann)r   HΔ(eve)r…….. HΔ(meg)r 
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From interval degrees to point degrees. 
 
1. We are not concerned with DP1: 
 
 DP1 is β-taller than DP2 is –.  

DP1(  λx.∃j[ x is j-tall and DP2 is max(λi. β([j¡i))-tall)] 
 
 be β-taller than DP2 is –.  

λx.∃j[ x is j-tall and DP2 is max(λi. β([j¡i))-tall)] 
 
2. x is j-tall means:  Hcm(x) ∈ j.  This is too weak, we will correct it to: 
 be β-taller than DP2 is –.  

λx.∃j[ Hcm(x) = j and DP2 is max(λi. β([j¡i))-tall)] 
 
 (technically:  j = [Hcm(x), Hcm(x)], but we set [r,r] = r). 
 
  be β-taller than DP2 is –.  

λx. DP2 is max(λi. β([Hcm(x)¡i))-tall) 
 
3. We get a degree predicate by inversing composition with the measure function: 
 

λx. [λδ. DP2 is max(λi. β([δ¡i))-tall)] (Hcm(x)) 
 
 β-taller than DP2 is –.  

λδ. DP2 is max(λi. β([δ¡i))-tall) 
 
4. Interpretative assumption:  

DP2 is P is interpreted as DP2(λy.P(y)) 
 
Hence: β-taller than DP2 is –.  

λδ. DP2(λy. y is max(λi. β([δ¡i))-tall) 
 
5. As before, y is j-tall means Hcm(y) ∈ j, so: 
 

β-taller than DP2 is ¡.  
      λδ. DP2(λy. Hcm,w(y) ∈ max(λi. β(δ¡i))) 
 
6.  λδ. DP2(λy. Hcm,w(y) ∈ max(λi. β(δ1¡i))) 
   = 

λδ.DP2( λy. [λδ2λδ1. δ2 ∈ max(λi. β(δ1¡i))](δ,Hcm(y)) ) 
  
            R(δ,Hcm(y)) 
where R = [λδ2λδ1. δ2 ∈ max(λi. β(δ1¡i))] 
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7.  β-taller than DP2 is ¡.  
λδ.DP2( λy. R (δ,Hcm(y)) ) where R = [λδ2λδ1. δ2 ∈ max(λi. β(δ1¡i))] 
 

With this, we have fitted Schwarzschild and Wilkinson in the schema for the semantics 
for CP comparatives. 
But we can go further. 
 
8. Landman 2010 (AC paper) proves: 
 
Lemma:  δ2 ∈ max(λi. β(δ1¡i)) iff β(δ1

r ¡R δ2
r) 

Proof:  see Landman 2010. 
 
8.  With the lemma: 
 
 β-taller than DP2 is ¡.  

λδ.DP2( λy. R (δ,Hcm(y)) ) where R = λδ2λδ1. β(δ1
r ¡R δ2

r) 
 
9 One more equivalence: (using the assumption that when Schwarzschild and Wilkinson 
use more than, less than, … they mean the same by that as what I mean by that): 
 

β(δ1
r ¡R δ2

r) iff  β ° ¡H (δ1, δ2) 
 
 
 β-taller than DP2 is ¡.  

λδ.DP2( λy. [β ° ¡H] (δ1, Hcm(y)) 
 

10.  In the modular theory: β-taller is interpreted as: β ° ¡H 
 
With this we conclude: 
 
THEORY III:  
SWL: Schwarzschild and Wilkinson, as reduced in Landman 2010 (AC 2009) 
 R  α  (the external comparative relation) 
 M   λP.P    (identity) 
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SWL 
 

 [α  [MP than DP is ¡ ] ] 
  PREDdim 
 
REldim    MP 
  α 
   M  CP 
             than 
           C  IP 
                                                Ø 
     DP  I' 
 
      I  PRED 
                                                                       is                           Ø 
            λδ. DP(  λx. α(δ,Hα(x))]  
                                    
 
α is interpreted inside the comparative CP as part of the interpretation of the gap. 
 

 (5) John is taller than Mary/ every girl is ¡ 
 
Everybody else: The CP denotes a set of degrees to which Mary, every girl is tall. 
Schwarzschild and Wilkinson: The CP denotes the set of degrees bigger than Mary’s  

      height/every girl’s height. 
 
GOOD PREDICTIONS: 
1.  Correct readings:  
    CP-comparatives that have correlates have the same interpretation as their correlates:      
    
 John is taller than Mary is: 
 α = >H 

 λPP(j) (λx. [λδ. λPP(m) (λy. δ >H HΔ(y))] (HΔ(x)) ) 
   = 

λPP(m) (λy. HΔ(j) >H HΔ(y))  =  HΔ(j) >H HΔ(m) 
 
The point is:  by interpreting the external degree relation internally, you avoid the 
problem of scoping the internal DP out, and the internal DP relation takes scope over the 
degree relation:  hence: 
 
 John is taller than every girl is: 
    = 

λP∀y[GIRL(y) → P(y)] (λy. HΔ(j) >H HΔ(y))  
∀y[GIRL(y) → HΔ(j) >H HΔ(y)]  

 John is taller than the tallest girl 
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 John is taller than some girl is: 
    = 

λP∃y[GIRL(y) ∧ P(y)] (λy. HΔ(j) >H HΔ(y))  
∃y[GIRL(y) ∧ HΔ(j) >H HΔ(y)]  

 John is taller than the shortest girl 
 
 exactly three girls → λP. |GIRL ∩  P | = 3 
 John is taller than exactly three girls are: 

|GIRL ∩  λy. HΔ(John) >H HΔ (y) | = 3 
 John is taller than the third smallest girl, but not taller than any other girls 
 
2. No unwanted presuppositions:  
John is taller than every girl does not presuppose that all girls have the same height. 
Mary is more famous than any philosopher and any linguist has ever been does not 
presuppose that any philosopher ever had the same (maximal) degree of fame as any  
linguist:  
   Consequently, no scoping out of the CP is necessary to get the correct readings. 
 
 
TWO PROBLEMS FOR SWL 
 
PROBLEM ONE: Polarity items in CP-comparatives. 
PS items are felicitous in CP-comparatives, but CP comparatives are not downward 
entailing (Schwarzschild and Wilkinson): 

(3) a. John is more famous than Mary is ¡. 
  b. Mary is a girl. 
  c.  Hence, John is more famous than every girl is. 
 
SWL has no stage in the semantic derivation on which to hang the difference in 
polarity licensing between CP comparatives and DP comparatives. 
 
PROBLEM TWO: downward entailing DPs in CP-comparatives.  
Hoeksema, Rullmann:  Downward entailing DPs in CP-complements are 
infelicitous. 

(1) a.    Mary is taller than nobody. 
        b.  #Mary is taller than nobody is −. 
        c.  #Mary is taller than nobody ever was −. 
SWL makes a wrong prediction:   

(1b) means the same as (1a). 
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THE DIRECTION OF COMPLEX RELATIONS 
 
Back to the semantics of DP comparatives. 
I have introduced comparision scales with different domains but intuitively the same 
direction:  >R and >M, and comparison scales with the same domain but different 
directions:  
 >M and <M.   

+:  a direction for relations in the same direction as the basic scale 
¡: a direction of a relation in the same direction as the converse scale. 

and we generalize this to associated functions: 
 

+:  >R, ≥R, ¡R, >H, ≥H, ¡H  morenum, at leastnum, moreunit, tall  
¡:   <R, ≤R, ¡R

c, <H, ≤H, ¡H
c   lessnum, at mostnum, lessunit, short 

 
(We will, for simplicity ignore the cases involving =M, the discussion is easily amended 
to them: they can count as both + and ¡.)  
 
All complex relations α derived have a normal form: 
 
 λδ2λδ1. Rα(δ1,f(δ2))  where Rα ∈ {>M, ≥M, <M, ≤M, =M)  
                                         and  f is a differential (like + <3,u,M>)  
           ( e.g. α = λδ2λδ1. δ1 <M (δ2 ¡M

 <3,u,M>) ) 
                                           Rα            f 
We will set:  
 
 The direction (+/¡) of complex relation α is the direction of Rα 

 
FACT:  The direction  of the complex relation α is predictable from the 
     derivation  by:  

  the direction of α is + if the number of ¡ elements used in the derivation is even, 
  the direction of α is ¡ if the number of ¡ elements used in the derivation is odd. 
 

more than three inches more tall than δ1
r >R δ2

r  + 3   
  +       +       +                          + 
less than three inches   more tall than δ1

r <R δ2
r  + 3  

  –       +       +       –       
less than three inches  more short than δ1

r >R δ2
r  ¡ 3    

  –      +  –       +    
less  than three inches  less   tall than δ1

r >R δ2
r  ¡ 3    

  ¡                         ¡      +            + 
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DIRECTIONAL ORDER AND DIRECTIONAL SUPREMUM SUPREMUM OF α 
 If α is a complex relation then the directional order for α, >α , and the \
 directional supremum for >α,  tα, are defined by: 

 
   >H  if  the direction of α is + 
 >α   =  

   <H  if the direction of α is ¡ 

 tα  =  t>α 

 
Examples: 
more than three inches more tall than  
α = δ1

r >R δ2
r  + 3  tα = t>H  (which corresponds to u<R)  

less than three inches more tall than   
α = δ1

r <R δ2
r  + 3  tα = u>H  (which corresponds to t<R)  

 
 
THE DIRECTIONAL SUPREMUM THEORY OF CP COMPARATIVES 

 
[α  [MP than DP is ¡ ] ] 

  PREDdim 
 
REldim    MP 
  α 
   M  CP 
             than 
            Mα C  IP 
                                                Ø 
     DP  I' 
 
      I  PRED 
                                                                       is                           Ø 
            λδ. DP(  λx. α(δ,Hα(x))]  
                                    
 
-SWL:  

-comparison relation α is interpreted inside the comparative CP. 
 
-Directional supremum theory: comparison relation α has a double effect: 

- comparison relation α is interpreted inside the comparative CP. 
 - comparison relation α determines the interpretation of the head M as  
                operation Mα. 
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 DIRECTIONAL SUPREMUM AS A PRESUPPOSITIONAL  
CHECK OPERATION Mα 

 
    β  if tα(β) is defined  

Mα(β)   =  
    undefined otherwise 
 
Mα is a presuppositional version of the identity function:   
- Mα has no semantic effect on input set of degrees β, Mα(β) has the same meaning as 
β,  
- Mα  presupposes that the dimensional supremum of α of set of degrees β exists. 
 
I assume here that  t<R and u<R are operations on R, and since 1 and ¡1 are not in R, 
for our purposes here, u<R(X) is undefined when X is left-unbounded, and t<R(X) is 
undefined when X is right-unbounded. 
 
Mα: like a definiteness operation, but without the type change from <d,t> to d: 
        Mα(β) presupposes that  the unique object tα(β) exists, even if it doesn't denote it.  
 

CONSEQUENCE: 
  If βCP and βDP are comparative correlates and the meaning of βCP is defined,  

then βCP and βDP have the same meaning. 
 
1a) and (1b) are predicted to be equivalent, whenever (1b) is defined: 
 
(1) a. John is α than DP 
 b. John is α  than [CPDP is ¡ ] 
 
Thus:  the dimensional supremum theory of CP comparatives is a presuppositional 
variant of SWL. 
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DOWNWARD ENTAILING EXPRESSIONS INSIDE CP COMPARATIVES 
 

(1)  John is taller than every girl is – 
taller:    >α = >H  tα = t>H  derived from u<R 
CP: than every girl is ¡ β  =  λδ.∀y[GIRL(y) → δr > HΔ(y)r] 
                 u<(β)r defined  FELICITOUS 
                                      O 
  o   o 
             HΔ(g1)r  ……………….HΔ(gn)r 

 
(2)  #John is taller than no girl is – 

taller:    >α = >H  tα = t>H  derived from u<R 
CP: than no girl is ¡  β  =  λδ.¬∃y[GIRL(y) ∧ δr > HΔ(y)r] 
u<(β)r undefined      INFELICITOUS 

                                                 
  o         o 
     HΔ(g1)

r ………….HΔ(gn)
r 

 
 (3) John is at most two cm taller than every girl is ¡.  
at most two cm taller:  >α = <H  tα = u>H  derived from t<R 
  
                                     t<(β)r defined   FELICITOUS  
  o       o   o        o 
       Hcm(g1)r     +2…………Hcm(gn)r   +2 
 
 (4) #John is at most two cm taller than at most three girls are ¡.   
at most two cm taller:  >α = <H  tα = u>H  derived from t<R 

INFELICITOUS  
                                                       O       t<(β)r 

o   o   o     o                         o    o       o       o        o     o 
      H"(g1)r  +2         H"(gn¡3)r+2                H"(gn¡2)r+2  H"(gn¡1)r +2  H"(gn)r+2 
 
 (5) #John is less tall than no girl is – 
less tall   >α = <H  tα = u>H  derived from t<R 
        INFELICITOUS 
       βr       t<(β)r  
  o         o   
              HΔ(g1)r ………….HΔ(gn)r 

 
FACT:  -Downward entailing noun phrases in the CP complements of comparatives  
                are predicted to be infelicitous by the directional supremum operation. 
    -Non-downward entailing noun phrases are not predicted to be infelicitous 

    by this mechanism. 
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MODULAR SCALAR SEMANTICS AND RICH SCALES 
 
-The CP-complement of the comparative: set of degrees 
   based on the external comparative relation: relation between degrees.   
-The scalar direction of the external degree relation determines the directional degree 
supremum: 
-depending on the scalar  direction, Mα checks for a degree supremum based on tR or 
based in uR.  
 
Downward entailing expressions inside the CP-complement yield at the CP level a set of 
degrees which is unbounded on the side of the dimensional supremum:  
-on the left side, in the case of +-relations (based on u<R);  
-on the right side in the case of ¡-relations (based on t<R). 
This produces the infelicity. 
 
Modularity of the semantics: 
The whole structure of  directional relations, operations, their converses, and the 
corresponding directional supremum notions are most naturally formulated at the level of 
the scales (as properties of and relations between degrees).   
-The structure of the scales as closed under basic arithmetics (allowing for subtraction to 
be defined), as closed under infimums and supremums, and as being unbounded in both 
directions has been exploited extensively.   
 
-Note: the use of unboundedness in B requires a modular semantics, because, at the level 
of individual or mixed relations, the access of the scale is though the measure function, 
and hence only degrees in the range of the measure function are relevant.  
But the range of the measure function is typically not unbounded:  
e.g. the measure functions for Height and Loveliness have a null-point, and negative 
values are not assigned. 
 
Hence:  the analysis of CP-comparatives relies on both the modular scalar semantics and 
the rich scales assumed. 
 
Turning matters around, the succes of the analysis provides motivation for a modular 
scalar semantics and rich scales. 
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LECTURE 5 
 
POLARITY ITEMS IN THE DIRECTIONAL SUPREMUM THEORY 
 

 (1) Mary is more famous than John ever was. 
 
FAME: FΔ : individuals £ moments of time → degrees of fame (measured in units of Δ).   

 [CP John ever was ¡famous ] 
λδ. ∃t[δ >F FΔ(John,t)] 

 The set of degrees δ for which there is a time t such that δ is bigger on the scale of  
fame than John's degree of fame at t.  

 
We assume, with Kadmon and Landman 1993, that the semantic effect of ever is 
widening.  Thus, you may have said (3A), and I reply (3B): 

 
(2) A.  Mary is more famous than John is now. 

             B.  Mary is more famous than John ever was. 
 
WIDENING IN CP COMPARATIVES 
The widening is temporal, and involves a wide and a narrow interpretation: 

 
(3)  a. λδ. ∃t[t 2 WIDE SET         ∧ δ >F FΔ(John,t)] 
 b. λδ. ∃t[t 2 NARROW SET ∧ δ >F FΔ(John,t)] 

 
Scalar comparison construction:   
Standard assumption: widening is not unconstrained, but is along the scale.     

 
maxJOHN,F is the moment of time where John's fame is maximal  
(for simplicity assume that there is one such time).     

 
Pragmatic assumption: there must be a point to using ever, and hence to widening. 
 
So:  Implicature:  maxJOHN,F ∉ NARROW SET  
 
Simplest assumption: 
Widening done by ever just adds  maxJOHN,F to the narrow set: 
 Widening: WIDE SET  = NARROW SET ∪ { maxJOHN,F} 
 
Interpretation of the CP: 

 
[CP John ever was ¡famous ] 
λδ. ∃t[t 2 NARROW SET ∪  { maxJOHN,F} ∧ δ >F FΔ(John,t)] 

 
By the assumptions made, John's degree of fame at maxJOHN,F is higher than John's 
degree of fame at any of the points of time in the narrow set: so: 
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[CP John ever was ¡famous ] 
λδ. δ >F FΔ(John,maxJOHN,F) 

 
Given these assumptions, in a natural context (1) is interpreted as: 

 
 (1)  Mary is more famous than John ever was. 
       FΔ(Mary)r >F FΔ(John,maxJOHN,F)r 

  
      Mary's degree of fame(now) is higher than John's degree of fame when it was  
      maximal. 

 
This is an adequate account of the meaning of (1). 
 
 
THE LICENSING OF THE PS ITEM.   
 
Kadmon and Landman: a PS item is licensed if widening leads to strengthening  
at the level of the closest relevant operator the PS item is in the scope of.  
 
STRENGTHENING IN CP COMPARATIVES 
 
Main assumption: strengthening is defined at the level of the  

    comparative scale (relation between elements of type δ) 
 
 SCALAR STRENGTHENING: 

On scale SM:  δ1 strengthens δ2 iff δ1 ≥M δ2 

On scale SM
c:  δ1 strengthens δ2 iff δ1 ≤M δ2 

 
DP comparatives: 
-No grammatical level where the interpretation of the DP is of type δ.  (type d or 
<<d,t>,t>) 
(Composition with the measure function takes place in the comparison relation, not in its 
object.)  Hence, scalar strengthening is irrelevant and PS items are not licensed in 
DP comparatives.  
 
CP comparatives: 
-No grammatical level where the interpretation of the CP is of type δ. 
-But the presuppositional check operation brings in an interpretation of type δ as a 
presupposition:  tα(β) of type δ. 
 
Assumption:  The polarity item is licensed if widening leads to 

    strengthening at the presuppositional level tα(β) 
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This means that we check whether (2a) strengthens (2b): 
 
(2) a. t>F(λδ.δ >F FΔ(j,max,JOHN,F)) 

             b. t>F(λδ.∃t[t 2 NARROW SET ∧ δ >F FΔ(John,t)]) 
 
t>F corresponds to u<R, hence: 
 
 t>F(λδ.δ >F FΔ(j,max,JOHN,F))  =   FΔ(j,max,JOHN,F) 
 
Let minnarrow,JOHN,F be the time in NARROW where John's fame is minimal in 
comparison to the other times in the narrow set.   
 
Obviously, the infimum of the degrees of John's fame corresponding to the times in the 
narrow set is  FΔ(j,minnarrow,JOHN,F). 
 
 t>F(λδ.∃t[t 2 NARROW SET ∧ δ >F FΔ(John,t)])  =  FΔ(j,minnarrow,JOHN,F) 
 
Thus, we are checking whether (3a) strengthens (3b): 

 
(3)  a. wide degree FΔ(j,max,JOHN,F) 

        b. narrow degree FΔ(j,minnarrow,JOHN,F) 
 
Clearly, FΔ(j,maxJOHN,F) ≥F FΔ(j,minnarrow,JOHN,F), hence (3a) strenghtens (3b): 
 
CONSEQUENCE: 
 
The polarity item ever is licensed in the CP comparative (1):  

 
(1) Mary is more famous than John ever was. 
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We look at (4): 
(4) Mary is less famous than John ever was. 

 
-Widening involves minJOHN,F, the time where John's fame was minimal 
 
The pragmatic assumption is that John's fame at minJOHN,F is smaller than all the times in 
the narrow set.  
 
The supremums we get here are as in (5): 
 
(5)  a. t<F(λδ.δ <F FΔ(John,minJOHN,F))        = minJOHN,F 

        b. t<F(λδ.∃t[t 2 NARROW SET ∧ δ <F FΔ(John,t)]) = maxnarrow,JOHN,F 
 
The relevant dimension is the converse dimension, i.e., we are in SF

c, so we use SF
c-

strengthening as defined above, and we see that indeed: 
 
  minJOHN,F ≤F maxnarrow,JOHN,F   (5a) strengthens (5b) 
 
CONSEQUENCE: 
 
The polarity item ever is licensed in the CP comparative (4):  
 

(4) Mary is less famous than John ever was.  
 
 
MODULAR SCALAR SEMANTICS AND RICH SCALES 
 
-The CP-complement of the comparative: set of degrees 
   based on the external comparative relation: relation between degrees.   
-The scalar direction of the external degree relation determines the directional degree 
supremum: 
-depending on the scalar  direction, Mα checks for a degree supremum based on tR or 
based in uR.  
 
Relevant for licencing of polarity items in CP-complements 
 
degree strengthening for polarity items is measured along the direction of the external 
comparative relation, which is a modular scalar relation. 
 
-Downward entailingness is not measured at an entailment scale but at a measure scale.  
-Open question:  why are free choice readings licensed in (DP and CP comparatives)? 
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SUPREMUM DEGREE INTERPRETATIONS IN MODALS 
 
Heim 2006: 
(1) To be accepted into the police school, you have to be 1.65 and you can be 1.92. 
 have to be 1.65:  1.65 is the minimal height necessary to be allowed in. 

can be 1.92 in (1):  1.92 is the maximal height possible to be allowed in. 
Modals inside comparatives: 
(2) a.  Fortunately, John is taller than he has to be (to be let in). 
 = taller than then minimal height necessary 
      b. Unfortunately, Bill is taller than he can be (to be let in). 
 = taller than the maximal height possible 
 
Heim's analysis:  

Heim measure relation:  
Given measure function Mu,w, the corresponding Heim measure relation is: 

 Mu,w
*(x,δ) iff  0 < δr ≤ Mu,w(x)r 

 Von Stechow comparative: 
 taller than ϕ ¡ 
 λδ. δ >H t<H( λδ. ϕ(λwλx.HΔ,w

*(x,δ)) )] 
 Classical modals: ∀w ∈ ACCw0, ∃x ∈ ACCw0 
 
Predictions:  
(3∀) John has to be 1.65 (to be let in) 
          ∀w ∈ ACCw0: Hm,w

*(John, 1.65)  
          The minimal heigth required for John to be let in 1.65   GOOD 
(4∀) John is taller than he has to be (to be let in). 
       Hm,w0(John) >H t<H( λδ. ∀w ∈ ACCw0: HΔ,w

*(John,δ))  
            John is taller than the minimal height.   GOOD 
(4∃) John is taller than he can be (to be let in) 

Hm,w0(John) >H t<H( λδ. ∃w ∈ ACCw0: HΔ,w
*(John,δ))  

 John is taller than the maximal height.   GOOD 
(3∃)John can be 1.95 (and be let in) 
          ∃w ∈ ACCw0: Hm,w

*(John,1.95) 
 In some world w ∈ ACCw0:   λδ.Hm,w

*(John,δ) = (0,1.95].    
No maximality interpretation imposed.     = PROBLEM ONE 

 
Disturbing asymmetry:  Maximality readings for degrees in existential modals are as 
readily available as minimality readings are for degrees in universal modals.    
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PROBLEM TWO 
 
right predictions for the modals inside comparatives =  
wrong prediction for explicit  quantifiers inside comparatives: 
 
 (8∀) John is taller than every girl is -. 
        Hm,w0(John) >H t<H( λδ. ∀y ∈ GIRLw0: HΔ,w

*(y,δ))  
        John is taller than the smallest girl is -. 
(8∃) John is taller than some girl is -. 
        Hm,w0(John) >H t<H( λδ. ∃y ∈ GIRLw0: HΔ,w

*(y,δ))  
        John is taller than the tallest girl is -. 
 
PROBLEM THREE 
Heim restricts attention to contexts with a unique minimally acceptable height and a 
unique maximally acceptable height.  Not the general case.  
 
Example:  minimally and maximally  acceptable heights depend on a decision by the 
height-committee still to be made:  
They will decide between 1.65 and 1.70 and between 1.90 and 1.95. 
 
Intuitively valid pattern: 
 (13∀) a. This year, you have to be 1.65 or 1.70 to be accepted for the police school. 

b. When I applied, I was taller than you have to be this year (and they didn't take me).  
c. Hence, I was taller than 1.70. 

 
Invalid pattern predicted by Heim:  
(13∀*) a. This year, you have to be 1.65 or 1.70 to be accepted for the police school. 

b. When I applied, I was taller than you have to be this year (and they didn't take me).  
*c. Hence, I was taller than 1.65. 

 
Intuitively valid pattern: 
 (13E) a. This year, you can be 1.90 or 1.95 and be accepted for the police school. 

b. When I applied, I was shorter than you can be this year (and they didn't take me).  
c. Hence, I was shorter than 1.90. 
 

Invalid pattern predicted by Heim:  
(14∃*) a. This year, you can be 1.90 or 1.95 and be accepted for the police school. 

b. When I applied, I was shorter than you can be this year (and they didn't take me).   
*c. Hence, I was shorter than 1.95. 

 
Diagnosis: 
These examples onvolve variation of minimal acceptable height and maximal 
acceptable height across the accessible worlds.   
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PROPOSAL Double modality: 
 
The examples in (13):  
1. implicit modal interpreted as a universal quantifier over accessible worlds 
2. in (13) accessible worlds are worlds where the height John has to be varies. 
3. in (14) accessible worlds are worlds where the height John can be varies. 
4. The height John has to be in w is the minimal acceptable heigh (for John) in w 
5. The height John can be in w is the maximal acceptable height (for John) in w.   
 
(1)-(3) give the following semantics:   
 
 (17) a. John has to be 1.65 or 1.70 to be accepted for the police school. 
∀w ∈ ACCw0: if Hm,w(John) = the height John has to be in w  
  then H m,w(John) = 1.65 ∨ H m,w(John) = 1.70 
(17) b. John can be 1.90 or 1.95 and be accepted for the police school. 
∀w ∈ ACCw0: if Hm,w(John) = the height John can be in w  

          then H m,w(John) = 1.90 ∨ H m,w(John) = 1.95 
 
Degree definites with modal restrictions: 
 
Explicit modal material is part of an implicit  relative clause on a definite degree head.  

the height John has to be – in w  
the height John can be – in w   

 
1. Let accw is the set of heights acceptable in w as John's height  
     Let accw

 b = accw ∪ {u<H(accw), t<H(accw)} 
2. ACCw is a set of worlds where John's height varies according to accw: 
    We associate with accw

 b a set of accessible worlds ACCw  with constraint:  
 For every δ ∈ accw

 b there is a z ∈ ACCw : Hm,z(John) = δ 
 For every z ∈ ACCw: there is a δ ∈ accw

 b: Hm,z(John) = δ 
3. Degree definite: σ(β) = t<H(β)   if t<H(β) ∈ β,  undefined otherwise 
 

Degree relative: 
the height John has to be:    σ(λδ.∀z ∈ ACCw: H(δ,Hm,z(John))) 
the height John can be: σ(λδ.∃z ∈ ACCw : H(δ,Hm,z(John))) 

 
Constraint on H 
H is a relation between degrees such that: 
σ(λδ.∀z ∈ ACCw: H(δ,Hm,z(John)))  =  u<H(accw) 
σ(λδ.∃z ∈ ACCw : H(δ,Hm,z(John))) =  t<H(accw) 

 
-For example,   Heim's relation works: H(δ1,δ2)  iff  0 <H δ1 ≤H δ2 
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-Alternative: construct set of worldsACCw from set of degrees accw through degree 
ideals: 
 World construction: 
 For δ ∈ accw

b: wδ = {δ' ∈ accw
b: δ' ≤H δ}. 

 ACCw = {wδ: δ ∈ accw
b} 

the height John has to be in w according to accw to be accepted  
σ(λδ.∀z ∈ ACCw: δ ∈ z)  = u<H(accw) 
the height John can be in w according to accw  and be accepted  
σ(λδ.∃z ∈ ACCw : δ ∈ z) = t<H(accw) 

 
Valid inference: 
(17) a. John has to be 1.65 or 1.70 to be accepted for the police school. 
∀w ∈ ACCw0: if Hm,w(John) = u<H(accw) then H m,w(John) = 1.65 ∨ H m,w(John) = 1.70 
(17) b.  I am taller than John has to be: 
∀w ∈ ACCw0: if Hm,w(John) = u<H(accw) then Hm,w0(Fred) >H Hm,w(John) 
(17) c. I am taller than 1.70 
 Hm,w0(Fred) >H 1.70 
 
Valid inference: 
(18) a. John can be 1.90 or 1.95 and be accepted for the police school. 
∀w ∈ ACCw0: if Hm,w(John) = t<H(accw) then H m,w(John) = 1.90 ∨ H m,w(John) = 1.95 
 (18) b.  I am shorter than John can be: 
∀w ∈ ACCw0: if Hm,w(John) = t<H(accw) then Hm,w0(Fred) <H Hm,w(John) 
(18) c. I am shorter than 1.90 
 Hm,w0(Fred) <H 1.90 
 
Advantage 1. The asymmetry between the universal modal cases and the existential 
modal cases is removed. (i.e. problem one is resolved) 
Advantage 2. The analysis no longer relies on the analysis of the comparatives: we get 
the correct results with the almost (but not quite) naïve theory of comparatives, without 
relying on von Stechow's otherwise problematic theory (i.e. problem two is resolved). 
Advantage 3:  the analysis is tailored to the more general case: 
The variation of the mimimal/maximal possible heights in degree modals is analyzed as variation 
of the definites the height John has to be and the height John can be across the worlds accessible 
according to an implicit accessibility relation (i.e. problem three is resolved). 
 
Advantage 4:  The Heim minimality/maximality effects are moved from the degree 
phrases to the interpretation of degree abstraction inside modal relatives.   
 
Work on degree relatives (e.g. Carlson 1977, Heim 1987, Grosu and Landman 1998,  
Landman 2000, Grosu and Krifka 2007, Landman ms.) has precisely argued that the 
internal semantics of degree relatives involves internalmoperations like maximalization.  
This is the natural place for modal minimalizer/mazimalizer operations like H to be 
introduced in the derivation.    
The analysis puts the modal minimalizer/mazimalizer effects in the grammatically 
plausible place.  
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